Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selective area growth of III-V nanowires and their heterostructures on silicon in a nanotube template: towards monolithic integration of nano-devices

Identifieur interne : 000569 ( Main/Repository ); précédent : 000568; suivant : 000570

Selective area growth of III-V nanowires and their heterostructures on silicon in a nanotube template: towards monolithic integration of nano-devices

Auteurs : RBID : Pascal:13-0219169

Descripteurs français

English descriptors

Abstract

We demonstrate a catalyst-free growth technique to directly integrate III-V semiconducting nanowires on silicon using selective area epitaxy within a nanotube template. The nanotube template is selectively filled by homo- as well as heteroepitaxial growth of nanowires with the morphology entirely defined by the template geometry. To demonstrate the method single-crystalline InAs wires on Si as well as InAs-InSb axial heterostructure nanowires are grown within the template. The achieved heterointerface is very sharp and confined within 5-6 atomic planes which constitutes a primary advantage of this technique. Compared to metal-catalyzed or self-catalyzed nanowire growth processes, the nanotube template approach does not suffer from the often observed intermixing of (hetero-) interfaces and non-intentional core-shell formation. The sequential deposition of different material layers within a nanotube template can therefore serve as a general monolithic integration path for III-V based electronic and optoelectronic devices on silicon.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0219169

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Selective area growth of III-V nanowires and their heterostructures on silicon in a nanotube template: towards monolithic integration of nano-devices</title>
<author>
<name sortKey="Das Kanungo, Pratyush" uniqKey="Das Kanungo P">Pratyush Das Kanungo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8803 Rüschlikon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schmid, Heinz" uniqKey="Schmid H">Heinz Schmid</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8803 Rüschlikon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bjork, Mikael T" uniqKey="Bjork M">Mikael T. Björk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>QuNano AB, Scheelevagen 17, Ideon Science Park</s1>
<s2>22370 Lund</s2>
<s3>SWE</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>22370 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gignac, Lynne M" uniqKey="Gignac L">Lynne M. Gignac</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IBM Research-Watson</s1>
<s2>Yorktown Heights, NY 10598</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>IBM Research-Watson</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Breslin, Chris" uniqKey="Breslin C">Chris Breslin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IBM Research-Watson</s1>
<s2>Yorktown Heights, NY 10598</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>IBM Research-Watson</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bruley, John" uniqKey="Bruley J">John Bruley</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IBM Research-Watson</s1>
<s2>Yorktown Heights, NY 10598</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>IBM Research-Watson</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bessire, Cedric D" uniqKey="Bessire C">Cedric D. Bessire</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8803 Rüschlikon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Riel, Heike" uniqKey="Riel H">Heike Riel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8803 Rüschlikon</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0219169</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0219169 INIST</idno>
<idno type="RBID">Pascal:13-0219169</idno>
<idno type="wicri:Area/Main/Corpus">000B65</idno>
<idno type="wicri:Area/Main/Repository">000569</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4484</idno>
<title level="j" type="abbreviated">Nanotechnology : (Bristol, Print)</title>
<title level="j" type="main">Nanotechnology : (Bristol. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalysts</term>
<term>Core shell structure</term>
<term>Epitaxy</term>
<term>Experimental design</term>
<term>Growth mechanism</term>
<term>Heteroepitaxy</term>
<term>Heterointerface</term>
<term>Heterostructures</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium antimonides</term>
<term>Indium arsenides</term>
<term>Interfaces</term>
<term>Intermixing</term>
<term>Monocrystals</term>
<term>Morphology</term>
<term>Nanoelectronics</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Nanotubes</term>
<term>Nanowires</term>
<term>Optoelectronic devices</term>
<term>Selective area</term>
<term>Selective growth</term>
<term>Template reaction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Croissance sélective</term>
<term>Aire sélective</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Hétérostructure</term>
<term>Nanotube</term>
<term>Réaction dirigée</term>
<term>Nanoélectronique</term>
<term>Catalyseur</term>
<term>Mécanisme croissance</term>
<term>Semiconducteur III-V</term>
<term>Epitaxie</term>
<term>Hétéroépitaxie</term>
<term>Synthèse nanomatériau</term>
<term>Monocristal</term>
<term>Antimoniure d'indium</term>
<term>Morphologie</term>
<term>Arséniure d'indium</term>
<term>Composé III-V</term>
<term>Hétérointerface</term>
<term>Plan expérience</term>
<term>Interface</term>
<term>Structure coeur couche</term>
<term>Dispositif optoélectronique</term>
<term>Substrat silicium</term>
<term>InAs</term>
<term>InSb</term>
<term>8107V</term>
<term>8107B</term>
<term>8107D</term>
<term>8116B</term>
<term>Intermélangeage</term>
<term>Structure coeur coque</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We demonstrate a catalyst-free growth technique to directly integrate III-V semiconducting nanowires on silicon using selective area epitaxy within a nanotube template. The nanotube template is selectively filled by homo- as well as heteroepitaxial growth of nanowires with the morphology entirely defined by the template geometry. To demonstrate the method single-crystalline InAs wires on Si as well as InAs-InSb axial heterostructure nanowires are grown within the template. The achieved heterointerface is very sharp and confined within 5-6 atomic planes which constitutes a primary advantage of this technique. Compared to metal-catalyzed or self-catalyzed nanowire growth processes, the nanotube template approach does not suffer from the often observed intermixing of (hetero-) interfaces and non-intentional core-shell formation. The sequential deposition of different material layers within a nanotube template can therefore serve as a general monolithic integration path for III-V based electronic and optoelectronic devices on silicon.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4484</s0>
</fA01>
<fA03 i2="1">
<s0>Nanotechnology : (Bristol, Print)</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>22</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Selective area growth of III-V nanowires and their heterostructures on silicon in a nanotube template: towards monolithic integration of nano-devices</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DAS KANUNGO (Pratyush)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHMID (Heinz)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BJÖRK (Mikael T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GIGNAC (Lynne M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BRESLIN (Chris)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BRULEY (John)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BESSIRE (Cedric D.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>RIEL (Heike)</s1>
</fA11>
<fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>QuNano AB, Scheelevagen 17, Ideon Science Park</s1>
<s2>22370 Lund</s2>
<s3>SWE</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>IBM Research-Watson</s1>
<s2>Yorktown Heights, NY 10598</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s2>225304.1-225304.6</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22480</s2>
<s5>354000503035780090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0219169</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nanotechnology : (Bristol. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We demonstrate a catalyst-free growth technique to directly integrate III-V semiconducting nanowires on silicon using selective area epitaxy within a nanotube template. The nanotube template is selectively filled by homo- as well as heteroepitaxial growth of nanowires with the morphology entirely defined by the template geometry. To demonstrate the method single-crystalline InAs wires on Si as well as InAs-InSb axial heterostructure nanowires are grown within the template. The achieved heterointerface is very sharp and confined within 5-6 atomic planes which constitutes a primary advantage of this technique. Compared to metal-catalyzed or self-catalyzed nanowire growth processes, the nanotube template approach does not suffer from the often observed intermixing of (hetero-) interfaces and non-intentional core-shell formation. The sequential deposition of different material layers within a nanotube template can therefore serve as a general monolithic integration path for III-V based electronic and optoelectronic devices on silicon.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07D</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A16B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Croissance sélective</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Selective growth</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Aire sélective</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Selective area</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Nanotube</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Nanotubes</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Réaction dirigée</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Template reaction</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Reacción dirigida</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Nanoélectronique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nanoelectronics</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Catalyseur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Catalysts</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Epitaxie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Epitaxy</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Hétéroépitaxie</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Heteroepitaxy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Heteroepitaxia</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Antimoniure d'indium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium antimonides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Morphologie</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Morphology</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Hétérointerface</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Heterointerface</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Heterointerfase</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Plan expérience</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Experimental design</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Interface</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Interfaces</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Structure coeur couche</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Core shell structure</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Optoelectronic devices</s0>
<s5>36</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Substrat silicium</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>InSb</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>8107D</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>8116B</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Intermélangeage</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="32" i2="3" l="ENG">
<s0>Intermixing</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Structure coeur coque</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="33" i2="3" l="ENG">
<s0>Core shell structure</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="33" i2="3" l="SPA">
<s0>Estructura núcleo cascarón</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fN21>
<s1>203</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000569 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000569 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0219169
   |texte=   Selective area growth of III-V nanowires and their heterostructures on silicon in a nanotube template: towards monolithic integration of nano-devices
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024